Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from ATrain

نویسنده

  • Gerald G. Mace
چکیده

[1] Annually averaged cloud properties, cloud radiative effects, and cloud radiative heating from 20° × 20° latitude‐longitude regions in the Southern Ocean (50°S, 135°W) and the North Atlantic (55°N, 25°W) are compared using quantities derived from measurements collected by active and passive remote sensors in the NASA A‐Train. The algorithm suite used to infer cloud properties along the nadir track of the CloudSat and CALIPSO satellites takes input from the cloud boundaries from the merged active remote sensors, radar reflectivity from CloudSat, liquid water path derived from the Advanced Microwave Scanning Radiometer on Aqua, optical depth derived from the Moderate Resolution Imaging Spectroradiometer on Aqua, and top‐of‐atmosphere (TOA) fluxes measured by the Clouds and the Earth’s Radiant Energy System. Errors in annually averaged cloud radiative effect are estimated to range from approximately 5 to 10 W m and heating rate uncertainties range from 0.5 to 2 K day. The study regions demonstrate a high degree of similarity in cloud occurrence statistics, in cloud properties, and in the radiative effects of the clouds. Both regions are dominated by a background state of boundary layer clouds (mean liquid water path ∼150 g m). Boundary layer clouds and cirrus (mean ice water path ∼100 g m) occurring either alone or together amount to approximately 75% of all clouds. Deeper frontal clouds amount to 10%–12% of the coverage. A strong net TOA cooling effect is partitioned between solar cooling of the surface and IR cooling of the atmosphere that is dominated by the ubiquitous boundary layer clouds. It is shown that regimes inferred according to their cloud top pressure and optical depth are often dominated by multiple hydrometeor layers and therefore defy simple classification. Because of this vertical distribution, hydrometeor‐induced heating is distributed within the atmosphere in a different way than would be inferred from passive remote‐sensing data considered alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift

Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined...

متن کامل

Global Distribution and Climate Forcing of Marine Organic Aerosol-Part 2: Effects on Cloud Properties and Radiative Forcing

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 W m−2 (7 ...

متن کامل

Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene.

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for int...

متن کامل

Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations

Effects of aerosol radiative forcing on the diurnal and seasonal cycles of precipitation over West Africa and eastern Atlantic Ocean are investigated for the boreal summer season: June–July–August. An eight year (2000–2007) average of GCM simulated rainfall data is compared with the corresponding TRMM rainfall data. The comparison shows that the amplitude of the diurnal cycles of rainfall over ...

متن کامل

Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya

This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010